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Proposition 0.1 (Exercise 1). Let G be a group, and let V,W be finite-dimensional rep-
resentations of G. Let Homg(V, W) be the set of linear maps ¢ : V. — W such that the
following square commutes for every g € G.
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The space Hom(V, W) is a representation of G via the isomorphism V* @ W = Hom(V, W).
Using this G-module structure, we can define

Hom(V, W) = {¢ € Hom(V,W)|g - ¢ = ¢}
Then Hom(V, W)% = Homg(V, W).

Proof. We'll write g¢ for composition and g - ¢ for the action of g on ¢ € Hom(V, W) as a
G-module in order to distinguish these notions. Note that

(g-0)(v) = go(g~"v)

by the discussion on page 4 of Fulton & Harris. Let ¢ € Homg(V, W). Then since g = ¢g,
we get

(g 9)(v) = go(g~v) = dg9~'v) = H(v)
Thus g - ¢ = ¢, and ¢ € Hom(V,W)¢. Thus Homg(V, W) C Hom(V,W)%. Now suppose
¢ € Hom(V,W)%. Then for allv € V and g € G,
¢(v) = (97" 9)(v) = g 'd(gv) = go(v) = ¢(gv) = g¢ = ¢g

Thus ¢ € Homg(V, W), so we have the opposite containment Hom(V, W)¢ C Homg(V, W).
Hence these are equal. O

Proposition 0.2 (Exercise 2). Let p : G — GL(V) be a complex representation of a finite
group G where dimV = n, such that det p(g) = 1 for all g € G. Then AV and A" "*V* are
isomorphic as representations of G.



Proof. As is typical when dealing with representations, we’ll be somewhat careless in our
notation, and refer to the map p(g) simply by g. It makes notation more compact, and
hopefully does not cause too much confusion.

First, we claim that A"V is the trivial representation, that is, g € G acts as the identity
on A"V. Let g € G, and choose a basis of V' consisting of eigenvectors wy, . . ., w, for g. (We
can do this because V' is a C-vector space.) Let A; be the corresponding eigenvector for w;.
Then A"V is spanned by wy A ... A w,, so it is sufficient to check that g acts as identity on
this single spanning element. We compute how g acts on this element:

glwr Ao Awy) = gy AL A g = Mwy AL A Aw, = (H)‘l> (w1 Ao Awy)
i=1

By the hypothesis, the determinant of g is 1, so the product of eigenvectors is one. Hence
glwr AL Awy,) = wp AL .. Aw,, S0 g acts as the identity, as claimed. Thus A"V is the trivial
representation, that is, A"V =2 C as representations of G. Now consider the G-linear map

) ARV x AMTRY 5 ATV
(VIA oAV Ukt A oo AU) = U A AU AV AL Ay,

This induces a linear map ¢ : A*V — Homg (A" "V, A"V) defined by ¢(z)(y) = (z,y). Note
that A" *V* = (A"FV)* = Homg(A"*V,C) (see Appendix B.3, page 476 of Fulton &
Harris). By our earlier remarks concerning A"V, we have A" *V* = Homg (A" *V, A"V).
Thus we can think of ¢ as a map A¥V — A" ¥V* 5o if we can show that ¢ is an isomorphism
we are done. Since the domain and range of ¢ are finite-dimensional vector spaces, by the
Rank-Nullity Theorem injectivity of ¢ implies surjectivity, so it is sufficient to show that ¢
is injective.

Suppose x € ker ¢. That is, ¢(z)(y) = (x,y) = 0 for all y € A" *V. Fix a basis e1,...¢e,
of V. Then, using the notation of multi-indices, we can write x uniquely as » _; are; where

[:(Zl,,Zk) 1<y <is<... <4, <n er=¢€ N Ne,

Y

Suppose x # 0. Then choose I so that aj, # 0, and let Jy be the “complimentary” multi-

index to Iy, that is, Jo = (Jgt1,---,Jn) Where 1 < jri1 < Jrgo < ... < Jn < n and

{il,...,ik+1} N {jk-i—lajn} :® {il,...,ik+1} U {jk+1,...,jn} = {1,,7’L}
Define y = ej,. Then

o(x)(y) =(z,y) =z Ay = (Z a]el) Nesw =Y arler Aey,)

1 1

For I # I, the wedge product e; Aey, will be zero, since there will be a repeated basis vector
e;. Thus

S(x)(y) =Y arler Aeg,) = ag(en, Aey,)
I
Since Iy and Jy were complimentary/disjoint, ey, Aej, = £(e1 A...Ae,), where the £ comes
from the sign of the permutation required to get to the increasing order. Thus ¢(x)(y) # 0,
which is a contradiction, so we conclude that z = 0 so ker ¢ = 0, and ¢ is injective, and
hence it is an isomorphism. O



Lemma 0.3 (for Exercise 3a). Let G be a finite group, and let Rg be the reqular represen-
tation (over C), and let x g, be the character. Then

=1, I7°
M6 g=e

Proof. If g = e, then g acts as the identity on R, so its matrix representation is the identity
matrix, of size dim R = |G/|. This has trace |G|. If g # e, we know that g acts to permute
the basis of Rg, so g is represented by a permutation matrix (one 1 in each row and column,
zeroes else). We know that g acting by left multiplication has no fixed points, because a
fixed point h implies

gh=h = g=e

Thus g fixes none of the basis of Rg. Thus the diagonal entries of the matrix representation
of g are all zero, so the tr(g) = xr.(g) = 0. O

Proposition 0.4 (Exercise 3a). The regular representation R of Ss decomposes as
R=UaU VeV

Proof. By the previous lemma, we know that the character of the regular represenation of

SgiS
0 g#e
Xr(9) =
6 g=e

A character table for S5 can be found on page 14 of Fulton & Harris. We can write xr as
the sum xgr = xu + xur + 2xv. Since a representation is determined by its character and
this is also the character of

UelU VeV

we get the isomorphism (of Ss-representations)
REUU VOV
[

Lemma 0.5 (for Exercise 3b). Let V' be the standard, irreducible, 2-dimensional represen-
tation of Ss. Then the character of Sym* V' is

XSymkV(l) =k +1

(o) 1 k=0mod?2
o g
Xsym*v 0 k=1mod?2

1 k=0mod 3
Xsym*v(T) =4 —1 k=1mod3
0 k=2mod3

where o = (12) and 7 = (12 3) and w = >™/3.
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Proof. First, recall the usual basis eq, es of V' with
Tep = wey Tey = wey el = ey ey = e
where 7 = (12 3) and ¢ = (1 2) and w = /3. The usual basis for Sym* V is given by
{eg-...-e1,e1...-e1-€9,...69-...€3}

Note that dim Sym”* V' = k41, which gives us Xsymt v (1) = k+1. We introduce the notation
V@ij) = €1 ... €1 €y ... ey Where e; appears i times and e, appears j times. Then we
can rewrite the basis of Symk V as {v(m)]i +j5= k}, which we ordered as v 0) < vr—1,1) <
... <o, The respective actions of o, 7 on v, ;) are

O'U(i’j):0'(61'...'61'62'...62)
= 0€1*...-0€1-0€y-...0€9
=€2°..."€2-€1"...°€1
=€1"..."€1 €2 ..."€
= YGa)

VG ) =T(e1-...-e1-ex-...€2)
=T€1*..."T€1 "T€y " ...TE9
=We1 ... We1 -Weg *...Wey
— ()20,
=W TU3)

Viewing o, 7 as elements of GL(Sym* V), their matrices are

00 0 1 ok 0 0 ... 0
00 10 0 Wkt 0 ... 0
0 1 00 :

1 00 0 0 0 w2k

Note that these are (k + 1) x (k + 1) matrices. Thus

1 k=0mod?2

=t =
Xsymh v () = tro {0k51mm2

k k
Xsym* v (T) :trT:ZwkH :wkaj =fFltwt?+1+w+? +.. . +wh)
=0 =0

Note that 1 + w +w? =0, so

Wk k=0mod 3
XSymkV(T) = Wk(l +W) k=1mod3
0 k=2mod3



When k& = 0 mod 3, w* = 1. We have 1 +w = —w?, so the case k = 1 mod 3 becomes —w**+2,
which is —1. Thus

1 k =0 mod 3
0 k=2 mod 3

]

Proposition 0.6 (Exercise 3b, part one). Let V' be the standard, 2-dimensional, irreducible
representation of Sz, and let R be the reqular representation of Sz. Then

Sym*°V =~ Sym*V ¢ R

(This is an isomorphism of Ss-representations.) Note that as a consequence of the next
result, R = Sym® V', so we can also write this formula as

Sym 8V = Sym* V @ Sym® V

Proof. We will show that they have the same character, using the previous lemma. Recall
that diim Sym* V =k + 1 and dim R = |S;| = 6, so

Xgymr+o v (1) = dim Sym™*® V' = k + 7 = dim Sym" V + dim R = xg,nr ver(1)

By Lemma 0.3, xg = 0 except at the identity, so now we just need to show that xgy,r+6y =
Xsym*k v On 0, 7. By the previous lemma, the value on ¢ depends on k mod 2, and the value
on 7 depends on k£ mod 3, but £k = (k + 6) mod 3 and k = (k + 6) mod 2, so they agree
on o and 7. Thus they have the same character, so they are isomorphic. (For proof that
R = Sym® V, see the next proposition. ) O

Proposition 0.7 (for Exercise 3b). Let V' be the standard, 2-dimensional, irreducible rep-
resentation of S3. Then

Sym’V = U

Sym'V =2V

Sym’V =2UaqV
Sym*V=2UaeU eV
Sym*V=UeVaeV
Sym°V=2UaU eVaeV

If we write k = 6q + r where q,7 € Z and 0 < r <5, then
Sym*V = Sym"V @ (@ R@q>

where REZU U @&V @V is the reqular representation.



Proof. We’ll be somewhat slopping in writing a character of a representation of S3 as a 3-
tuple (z,y, z). For example, xy = (1,1,1), xor = (1,—1,1),xv = (2,0, —1). By the Lemma
0.5, Xsymtv = (kK +1,a, 8) where

1 k=0 mod 3
1 k=0mod?2

o= B=<—-1 k=1mod3
0 k=1mod?2

0 k=2mod 3

Using Proposition 2.1 of Fulton & Harris, the character of U®? @ U'®® @ V®¢ is
a(1,1,1) +b(1,~1,1) + (2,0, 1) = (k + 1, a, B)

which gives the equations
‘a+b+2c=k+1 a—b=a«a a+b—c=p

We can solve these equations to get

Sk +1-p)

1

a= 5(/{: + 1+ a)
1 1

b==(k+1—a)—=(k+1-7)
2 3
1

c==(k+1-0)
3

Note that these are always integers. When k = 0, we recover (a,b,c) = (1,0,0), which

confirms Sym’V = U. When k = 1, we get (a,b,c) = (0,1, 1), which confirms Sym'V = V.
Putting this all in a table, we get

kia b c
0O(1 0 O
110 0 1
211 0 1
311 1 1
411 0 2
511 1 2

From this table, we can read off the irreducible decompositions of Sym”* V for k = 0,1, 2, 3, 4, 5.
Sym’V =U
Sym'V =V
Sym’V =UaqV
Sym*’V=UaU oV
Sm*'V=UqVaV
Sym’V=UasU VeV
The last statement of the claim is just induction using the previous proposition. We know

that we can “peel off” multiples of 6 by taking the direct sum with a copy of R, so the result
follows. O



Proposition 0.8 (Exercise 4). Let V' be the standard, 2-dimensional, irreducible represen-
tation of S3. Then Sym?(Sym® V) = Sym®(Sym? V).
Proof. Using Exercise 1.10 of Fulton & Harris, we have an (ordered) basis e; = (w, 1,w?), e3 =
(1,w,w?) with

TEl — Weq 7'62:(JJ2€2 g€1 = €9 g€y = €1
where 0 = (1 2),7 = (1 2 3) and w = */3. (Recall that 0,7 generate Ss, so this fully
determines the action of S3.) Define v;; = €;-€; and v;j, = €; - €; - ex. Then {v11,v12,v22} is a
basis for Sym? V' and {v111, U112, V122, Vg2 } is a basis for Sym® V. A basis for Sym?(Sym?® V)
is given by

V111 - V111 V111 - V112 V111 - V122 V111 - U222
V112 - V112 V112 - V122 V112 - U222

V122 * V122 V122 * U222

V222 - V222

and a basis for Sym?®(Sym? V') is given by

V11 ° V11 V11 V11 * V11 - V12 V11 * V11 - V22
V11 * V12 - V12 V11 V12 V22 V11 * V22 * V22
V12 * V12 - V12 V12 * V12 - V22 V12 - V22 * U2 V22 * V22 * V22

We define a map, which we will show is an isomorpism.

® : Sym*(Sym® V) — Sym?*(Sym?* V)
U111 * U222 F> V11 * V12 - V22
U112 * V122 F> V12 - V12 - V12
U111 * V111 B2 V11t V11 V11
Vg2 * U222 F> Vg * Vg2 - U22
U111 * V112 B> V11 * V11 V12
V122 * U222 F7 V12 * U2 * V22
V111 * V122 > V11 - V12 - V12
U112 * U222 F> V12 * V12 * V22
V112 * V112 7 V11 * V11 - V22

V122 * V122 F> V11 * V22 * V22

Since we have mapped a basis to a basis, ® is an isomorphism of vector spaces, so it just
remains to check that it is equivariant with respect to the S; action. Since S5 is generated
by o, T, it is sufficient to check that ® respects the action of o and 7.

On the basis e1,es of V', o acts by the permutation (e; e;3). Recall that the G action
on the symmetric product is defined by g(z - y) = gz - gy. So o acting on v, = €; - €; - ey,
we just turn 1’s into 2’s and vice versa. For example, oviis = v991 = v102. S0 we see that
U111 - V22 and vq12 - U199 are acted on by o as identity, as are ®(vy11 - vag2) and P(vyy2 - v122).
The remaining 8 elements of each basis are acted on by ¢ in pairs of transpositions, and it
is straightforward to check ® commutes with o for each basis element. For example,

7



@
V111 * V112 — V11 - V11 - V12
|- |-

o
V122 * U229 — V12 - U2g - V22

Now we just need to check that ® commutes with 7. Notice that e, e; are eigenvectors for
7; more specifically, Te; = w'e;. This implies that 7v;; = witv;; and Tv, = Wy
Similarly, 7(vijk - Vpmt) = WMy 0. So to see that ® commutes with 7, we just
need to check that ® preserves the sum of the subscripts. This can be confirmed by simply
looking at the table definition of ®. Thus we have shown that ® commutes with o, 7, so it
is S3-equivarient, so it is an isomorphism of representations. ]

Lemma 0.9 (for Exercise 5). Let V' be a finite dimensional vector space over C. There
exists a Hermitian inner product H : V xV — V.

Proof. Fix a basis {vy,...,v,} of V. Then we have a vector space isomorphism
o:V=>C" vi—e;=(...,0,1,0,...)

We have the classical Hermitian inner product on C" given by
H:C'xC"—C ﬁ(z,w)zz,zim
i=1

where z = (21,...,2,),w = (wy,...,w,). Then define H : V xV — V by
H(u,v) = H(¢v, $w)
Then H inherits all properties of H , so H is a Hermitian inner product. O

Lemma 0.10 (for Exercise 5). Let V' be a finite dimensional vector space over C and let G

be a finite group with representation G x V. — V. Suppose H : V x V — C is a Hermitian
inner product. Define

1 -
H:VxV—=C H(U,U)ZEZH(gu,gv)

geCG
Then H is a G-invariant Hermitian inner product on V.

Proof. 1t is straightforward to show via computation that H is additive, linear in the first
entry, antilinear in the second entry, conjugate-symmetric, and positive-definite. We will
show that H is G-invariant. Let x € G.

1 ~
H(U, U) - @ Z H(.gu7 g’U)
geG
1

|Gl

As g runs over each element in GG, so does zg for a fixed x € G, since G — G,g — xg is a
permutation of (G. Thus these two sums are the same up to permutation summands. Hence
H(u,v) = H(zu,zv), and H is G-invariant. O

H(zu,zv) = Z f[(gxu, grv)

geG



Proposition 0.11 (Exercise 5). Let V' be an irreducible representation of a finite group G.
Up to scalars, there is a unique Hermitian inner product on V' that is G-invariant.

Proof. By the previous two lemmas, a G-invariant Hermitian inner product on V exists.
Suppose H, H' are two such products. Define

H:V—V* Ur—><ur—>H(v,u)>

H:V V" Ur—><ur—>H'(v,u)>

Since H, H'" are nondegenerate forms, H , H' are vector space isomorphisms. Then the com-
position (H')"Yo H : V — V is a vector space automorphism. Since H' is G-linear, its inverse
is also G-linear, so this is a composition of G-linear maps, which is therefore G-linear. Then
by Schur’s Lemma, this composition must be equal to AI for some A € C. This implies that
H' = AH, which implies that H" = \H. O

Lemma 0.12 (for Exercises 6,7). Let V be a finite dimensional representation of G, and
let g € G have eigenvalues {\;}H%V (viewing g € GL(V)). Then the eigenvalues of g as an

automorphism of V™ are
n

[

k=1
where iy,19,...,1, € {1,...,dimV'}. Viewing g as an automorphism of Sym" V', the eigen-
values are all such products with 11 < iy < ... <i,. Viewing g as an automorphism of A"V,

the eigenvalues are all such products with iy < iy < ... < iy.

Proof. Define I = {1,...,dimV}, and let w; € V be the corresponding eigenvector for \;.
Let 41,149, ...,i, € I. Viewing g as g € GL(V®").

= Ay Wi, @ Aywi, @ ... @ Ay, wy,

= <H Alk) (wil W ®... Q0 win)
k=1

so we see that w;, ® w;, ® ... ®w;, is an eigenvector of g with eigenvalue szl i Thus all
products of this type are eigenvalues of g on V®". Since the dimesion of V®" is (dim V)", and
we have found (dim V)" eigenvalues (counting multiplicities), these are all of the eigenvalues.

Now we prove the statements about Sym”™ V' and A"V Since these are subspaces of V®",
the eigenvalues must be a subset of these products. Thinking of g as ¢ € GL(Sym" V'), we
have identified tensors up to permutation, so we can do the same calculation to have g act
on w;, ®...Rw;, , except now we may permute them so that i; <iy, < ... <4,. So in order
not to count eigenvalues too many times, we restrict to products where i; < ... < 4,. A
similar argument works for the statement about A"V. [

Proposition 0.13 (Exercise 6). Let V' be a finite dimensional representation of a finite
group G. Then

Xsym2v(9) = = (xv(9) + xv(9?))

N | —



Proof. Let d = dimV, and let {\;}&, be the set of eigenvalues for g : V. — V. Then

xv(g) = Z N xv(g?) = Z X xvl(g)? = (Z )\z')

By the previous lemma, the set of eigenvalues for g : Sym*V — Sym*V is {\\;]i < j}.
Now, reusing the identity

o (Zz >‘i)2 — Zz )‘?
> AN = 5

1<J

found on page 13 of Fulton & Harris, we can evaluate xgyp2y-

Xsymev(9) = D Nid; —<Z>\)\>+(Z)\l)\j> Zv Z

1<j 1<j

Z 2+ (Z )\i> = % (xv(g®) +xv(9)*)

]

Proposition 0.14 (Exercise 7). Let V' be a representation of G. The characters of Sym* V
and AN*V are

mg

XSym* v( Z H xv(s IZm.L Xakv (9 Z H v l;mz

=1 =1

0

where both sums are over multi-indices (my, ..., my) where » . jm; =k and m; > 0.

Proof. Let d = dimV and let {\;}&, be the set of eigenvalues for g € GL(V). Let hy, be the
complete homogenous symmetric polynomial, e, be the elementary symmetric polynomial,

and pg be the power sum symmetric polynomial, all in A1, ..., A\;. Concretely, they are
Z )\11>\lm € = Z )\Zl)\lm pk:ZAf
1< ..tm 11 <...<0m )

Note that v (¢*) = pr. By Lemma 0.12, the eigenvalues for g € GL(Sym* V) are products
Aiy - - A, where 77 < ... <4, so the trace is the sum over all such products. Similarly for
AFV . the eigenvalues are the same kind of products where i; < ... < 4,,, so the character is
the sum over those products. Thus

Xsymbv(9) = e Xarv(9) = ex

Using Newton’s Identities, we can write both hj and e, in terms of the polynomials py, . . ., ps.
That is to say, we can write both xg,, v (9) and x ey (g) in terms of xv (g), xv(9°), - - -, v (g¥).

=311 o= -

= — k= —
LL oty LL o, lgmi
=1 =1

10



where both sums are over multi-indices (my,...,my) where 3, jm; = k and m; > 0.
Changing this into the notation of characters, we get exactly the claimed formulas.

7

XSym V Z H XY |:m7:l XAkV Z H XV 'ZZT?”:1

3

Proposition 0.15 (Exercise 8). Let G be a finite group acting on a finite set X. Let
V= @ Cx
zeX
be the permutation representation of G. Then for g € G, xv(g) is the number of elements
of X fized by g.
Proof. Recall that the action of G on V' is defined by
GxV =V (g,x) —~g-x

where - is the action of G on X. Then we extend linearly to all of V. That is, each g € G
acts on V to permute the basis X of V. Thus, the matrix representation of g in the basis
X is a permutation matrix. In this permutation matrix, a one along the diagonal represents
an element x € X for which g -z = z, that is, a fixed point of g. Since g is represented by
a permutation matrix, all entries are zero except for a single one in each row, so the trace is
the number of fixed points. n

Proposition 0.16 (Exercise 9). Let V, W be irreducible representations of a finite group G,
and Ly : V — W a linear map. Define L :V — W by

29711/09

gEG

Zg_l Lo(g - v)

gEG
Then L is a G-module homomorphism. Consequently, if V and W are not isomorphic rep-
resentations, then L =0, and if V. =W, then L is multiplication by %

Proof. We claim that L is a G-module homomorphism Let h € G.

Zg_l Lo(g Zg_l Lo((gh) - v)

QEG gEG

or more explicitly,

Define x = gh. Then g~ = ha~!. Note that as g ranges over G, so does x, so we can rewrite

our sum as
Z (ha™') - Lo(z - v) Zh -+ Lo(x - v))

xEG :EEG

Z:L‘ - Lo(x - v)

xEG

= h~L(v)

11



Thus L is G-linear. Now by Schur’s Lemma, since L : V' — W is a G-module homomorphism
between irreducible representations, it is either an isomorphism or zero. Hence if V, W are
not isomorphic, L = 0. If V =W, Schur’s Lemma tells us that L = Al for some A. We know
that \ = tr L . Since tr is linear,

—1
|G\ Ztr Log) = ]G| Ztr Lo) = tr(Ly)
geG geq

since tr(AB) = tr(BA) (we applied this where A = g~'Lo, B = g). Thus A = & L("/). O

Lemma 0.17 (for Exercise 10). Let G be a finite group with irreducible representations
vV = GL(V) and pw : W — GL(W). For g € G, we view py(g) as a matriz with ij-th
entry o;;(g). Similarly, let B;; be the ij-th entry of pw(g). If V¥ W, then

Z azk ﬁ[]
gGG
If the matrices py(g) are unitary, then for all i,j, k, ¢ we have
(qvik, Bej) = 0
(For the case V=W, see next lemma.)

Proof. Let Ly : V — W be a linear map, viewed as a matrix, with ¢j-th entry L%. By the
previous result,

Z pw(9~") o Lo o py(g)

geG
is the zero map. On a matrix-entry level, we have

0= L‘-
|G| Z <PW OLOOPV(9)>

ij

Z (Z ie) L (v (9), )

QGG
~al ZG ; (aats™) Lie(85(9))

Since Ly was any linear map, we can choose LY, to be anything in C, and this equality will
still hold. In particular, we can choose LY, to be zero for everything except one fixed pair

(ko, o), and obtain

geG

where k = ko, ¢ = {y. Now suppose py(g) is unitary. Then a;;(g7") = ay;(g), so we get

(alku 5@] |G‘ Z azk B@] |G‘ Z azk 6@]

geG geG

12



Lemma 0.18 (for Exercise 10). Let G be a finite group with an irreducible representation
p:V = GL(V). For g € G, we view p(g) as a matriz with ij-th entry o;;(g). Then

1
i = J 52
|G\ZO"“ Jaei(9) = Gy Ot

geG

If the matrices p(g) are unitary, then

(aku aﬁj) 5kK52]

dim V

Proof. Let Ly : V — V be a linear map, viewed as a matrix, with ij-th entry L%. By the
previous result,

’G|Zp OLOO[)(Q)
geG

tr(Lo)

is multiplication by A = 7=¢>. Denoting the identity map V' — V by I, we can write the

statement L = Al as

1
— =
dim V/ Zk: T
On a matrix-entry level, this says
1
L;; = Spel) lij = —— 00 LY,
7 vZ e dimV; Rk
On the other hand, we can also write L;; using the definition of L in the following way.

Lij = |G| Z( Yo Lopla))
" 104 3 (oule™) e (onto)

e Z (Z (sl 1>%<9>>> Li

As in the proof of the previous lemma, Ly was arbitrary, so this equality holds for any values
of LY,. So if we choose them to be zero everywhere except for some pair (ko, £p), the sums
over k, ¢ collapse to a single term, both divisible by Lgozo, which cancel. All this to say, we
can equate the coefficients of LOZ in these sums to obtain

1
Z alk Oé@j g) dim V(Ské(szj

gGG

Now suppose the matrices p(g) = (ax(g)) are unitary. Then a(g7!) = ari(g), so we get

1
(Oékz,oée] |G| Zoém Qpj = |G| ZO% Oéeg 9) a4 mVaM&U

geG
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Proposition 0.19 (Exercise 10). Let G be a finite group, and let p,, : G — GL(V,,) be the
set of irreducible representations. Suppose that for g € G, pn(g) is a unitary matriz. For
g € G, viewing p,,(g) as a matriz, let the ij-th entry be oj}(g). Then the set of all o} forms
an orthogonal basis for the vector space of functions G — C with inner product given by

1 _
(@)= 1 > alg)Blg)

geG

Proof. Note that the space of functions G — C has dimension |G|, and the set {o77} has

size
> (dim V)

m

which is equal to |G|, so it is at least possible that these functions form a basis. First,

suppose m # n and consider the functions oj and ;. Since m # n, Vi, # V,, so by Lemma
0.17, we have

(aif o) =0
If m = n, then by Lemma 0.18,

1
(CVQZ, Oé?}) = m@z@q

That is, the inner product is zero unless ¢ = £ and k£ = j, in which case ajj = ajj. Thus

1
dim V™
0

which is to say that {04;7} is an orthogonal basis. O

(am an)_ m:nvl:&k:j
> =) else

Lemma 0.20 (for Exercise 11). The elements of SLa(Z/3) are

(o 1)
)

(

SN

—_

)

(6 2)

(
(

1
T

0
1

2

(16)

2 x
0 2
x 1
2 0

R
o O
o
-

N O

—
N—— ——

8

)
;)
b (3 ()

where x can be 1 or 2. (This gives a total of 24 elements.)

N\
NI\
N

~_

Proof. There can be no elements of SLy(Z/3) with three or four zero entries, since that
would force the determinant to be zero. If there are two zero entries, since it is invertible,
the zeroes occur along a diagonal. The nonzero diagonal must have product 1 if it is the
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main diagonal, or —1 = 2 if it is the antidiagonal. Thus the elements of SLy(Z/3) with two

zero entries are
1 0 2 0 0 2 0 1
0 1 0 2 1 0 2 0

Now consider elements with exactly one zero entry. As before, the nonzero diagonal must
have product 1 if it is the main diagonal and product 2 if is the antidiagonal. So all of the

elements with exactly one zero look like
1 =z 10 2 20
01 x 1 0 2 x 2
x 2 0 2 x 1 0 1
10 1 =z 2 0 2
for x =1 or x = 2. Finally, consider elements with no zero entries.
@0\ ¢ S1,(z)3)
c d 2
We know ad — bc = 1. Since none of a,b,c,d are zero, ad = 1 or ad = 2. Since bc # 0,

ad # 1. Thus ad = 2, and bc = 1. This means that {a,d} = {1,2} and b, ¢ can either both
be 1 or both be 2. So the elements of this type are

2 2

2 1

11 1 2 2 1
1 2 2 2 11
Lemma 0.21 (for Exercise 11). The conjugacy classes of SLa(Z/3) are

=10 1))

2 2
10

1 2

Co = 0 1

=100 9))

@000 o) (102) 6 2) (1) G D)

=10 2) (2 0) 5 1) (6 )

=100 000 (02) 63

=12 1) o) 1))
(96960

1))

The orders of the elements in each class are given in the following table.
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Class | Order
Co 1
Ch 2
Co 4
Cy o
Cs 3
Cs 3

Proposition 0.22 (Exercise 11). Let w = e*™/3. The character table of SLy(Z/3) is

size) |1 1 6 4 4 4 4
SLe(Z)3) | Co C1 Cy C3 Cp Cs5  Cg
U 1 1 1 1 1 1 1
4%} 1 1 1 W w  w w?
Wa 1 1 1 w  w? W w
|4 2 =2 0 1 1 —1 —1
VoW 2 -2 0 w w —w —w?
VoW, | 2 -2 0 w w —w? —w
T 3 3 -2 0 0 0 0

Proof. We can deduce the dimensions of the irreducible representations using Corollary 2.18
of Fulton & Harris. We have 7 positive numbers for which the sum of squares is 24. None
can be 4, since then the dimensions of the remaining irreps would all have to be 1, but
16+14+141+14+141 +# 24. There also can’t be two dim=3 irreps, since 9+9 = 18. There
can’t be zero dim=3 irreps, because we can’t get 24 by a sum of 4’s and 1’s with 7 terms.
Thus there is exactly one dim=3 irrep. We have 6 remaining irreps. Let a be the number of
dim=1 irreps and b be the number of dim=2 irreps. Then a + b = 6 and a + 4b = 15. This
has a unique solution (a,b) = (3,3). Thus the dimensions of the irreps are (1,1,1,2,2,2,3).
We always have the trivial representation, so at this point our character table looks like

(size) |1 1 6 4 4 4 4
SLy(Z/3) | Co C1 Co C3 Cy Cs Cg
U 1 1 1 1 1 1 1

1

1

2

p

2

3

First let’s find the dim=1 irreps. These are homomorphisms SLy(Z/3) — C*. An element of
order n must be sent to an nth root of unity. It turns out (not obviously) that it’s impossible
to send C; to —1, so it has to go to 1. Let w = ¢*™/3 and define Wy, W, by the following
characters.
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(size) 1 1 6 4 4 4 4
SLo(Z/3) | Cy Cy Cy C3 Cy C5 Cg

U 1 1 1 1 1 1 1
Wi 1 1 1 W w w W
W, 1 1 1 w w W w

One can check that these are in fact representations, and that (xw,, xw,) = (Xws, Xws) = 1,
so these are in fact irreps. We need to find a character of a two dimensional irreducible
representation. Notice that H = CyUC;UC} is an index 3 subgroup of SLy(Z/3) isomorphic
to the quaternion group. The character table of the quaternion group is

1 1 2 2 2

H |1 -1 J k

Ug |1 1 1 1 1

A |11 1 -1 -1

A1 1 -1 1 -1

A |1 1 -1 -1 1

Vg |2 =2 0 0 0

Note that Cj corresponds to the conjugacy class of 1, C corresponds to the conjugacy class
of —1, and the conjugacy classes of 7, j, k make up C5. To distinguish U as a representation

of H,G = SLy(Z/3), write Uy and Ug for the H- and G-representations respectively. Note
that Res Ugs = Res W, = Res Wy = Ug. Using Frobenius reciprocity, we can calculate

(XIndAZ'? XUG)G = (XIndA»;:XWl)G = (XlndAi) XWQ)G - (XAZ'? XUH)H - O

so Ind A; does not include any direct summands of Ug, W7, or Ws5. Since it is three dimen-
sional, it must be the one three dimensional irreducible represntation of G, which at this
point we know nothing about, except that it exists. Using the Mackey formula

1 -1
Xindw (9) = E Z Xw(z™ gx)

rzeGx " lgreH

for the character of an induced representation, we can compute Xmq 4, = (3,3,—2,0,0,0,0),
which gives us the character of the mystery dim=3 irrep. Now consider Ind V. Using
Frobenius reciprocity,

(XlndVH7XUg)G = (Xlnde, XWJG = (Xlnde, sz)c = (Xva XUH)H =0

so Ug, Wi, W5 do not appear in the direct sum decomposition of Ind Vy. Again, using
the Mackey formula, we can compute that Ind Vg = (6,—6,0,0,0,0). Then notice that
X1 + X7 # Xindvy, 50 Ind Vg 2 T'® T. Thus Ind Vy must be a direct sum of three of the
various 2-dimension irreps of G.

Suppose it is a direct sum of three copies of the same representation V{. Then 3xy, =
(6,—6,0,0,0,0), which implies xv, = (2,—-2,0,0,0,0). However, we compute (xvy, Xv,) # 1,
so this is not the character of an irreducible representation.

Write IndV,, = V; & V5 @ V3. The summands Vi, V5, V3 may be the same or different,
all we know is that they are all 2-dimensional irreps of G, we just know they aren’t all the
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same. So xv; + Xv, + Xvs = (6,—6,0,0,0,0). Consider the values of xy, on the class C;. It
must be a sum of up to square roots of unity, so the possibilities are {0, 1, —1,2, —1}. Since
we need to have three of these add up to 6, they must all be —2. So xy,(Cy) = —2. Since V;
is irreducible,

1

0= (W) = i S wlo)vr(a) = 37 (1)) + 1a)®) +6(-2))
geG
= 536+ 30i(C) ~ 124 (C2) = 6+ 3w (C1) = 12x1(C) = 0
— xu(Ca) = 3 (w(C) +2)

4
Since we know that yyv.(Cy) = —2, we get xv,(Cy) =0 for i = 1,2,3. Let a; = xv,(C3),b; =
xv;(C4),¢; = xv;(Cs), d; = xv;(Cg). Since V; is irreducible, we get
(xvi, xv) =0 (Xvi, xwy) =0 (Xvi, xw,) =0
expanding out and simplifying these equations, we get
a;,+b;+c;+d; =0 a; +wb; +we; +d =0 wa; +b+c+wd; =0

We can combine these equations to conclude that ¢; = —b; and d; = —a;. We have reduced
everything to finding the values of aq, as, as, b1, ba, b3. We have the equations

a; +az+as =0 by +be+b35=0

which can eliminate the variables as, b3. Using the fact that (XV“ ij) = 0;;, in the case

1 # J we get -
1—|—5in +bzbj =0

which is actually 3 equations. Using these, we can eliminate 3 more variables, leaving just
a; undetermined. Doing a bit more algebra, we can finally conclude that Vi, V5, V3 are all
distinct, and the final character table is as claimed. O

Proposition 0.23 (Exercise 12). Let H = A; C G = S5. Then
ndU=UaU’ IndV=VeoV IndW=wa W IndY =1Ind Z = A’V
(For the character tables of S5 and As detailing these these representations, see tables below.)

Proof. Since U, V,W refer to representations of both H and G, to distinguish them we’ll
write Uy, Vg, Wy for the H-reps, and Ug, Vg, Wq for the G-reps. First we tackle Ind U.
Note that ResUg = Res U’ = Uy. By Frobenius reciprocity,

(XIndUH7XUG)G = (XUHaXResUg)H = (XUHaXUH>H =1
(XlndUH7XU')G - (XUHJXResU’)H - (XUHvaH)H =1

so Ug and U’ both in Ind Uy as a single direct summand. Since H is an index two subgroup,
we know that dimInd7T = 2dim T for any representation 7', so dimInd Uy = 2dimU = 2.
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Thus Ind Uy = Ug @ U’, since there can’t be any other summands, since that would make
the dimension too big. Now consider Ind Vz. Note that ResV; = ResV’' = Vj, so again
using Frobenius reciprocity,

(XIndVI.mXVG)G = (XVHaXResVG)H = (XVH,XVH)H =1
(XlndVH7XV')G = (XVH>XResV’>H = (XVH7XVH>H =1

thus Ind Vi = Vg@®V’. There can’t be other summands by dimension counting. Now consider
Ind Wy. Again, Res Ws = Res W' = Wy, and we perform exactly the same calculation with
Frobenius reciprocity to conclude that Ind Wy =2 Ws & W',

(XIndWH7 XWG)G - (XWHv XResWG)H - (XWHv XWH)H =
(XIndW;p XW’)G = (XWH7 XReSW’)H = (XW}U XWH)H = 1
Finally, consider IndY and Ind Z. We have Res A2V = (6,0, —2,1,1).
(Xlndy,XMV)G = (XY?XRes/\Q\/)H =1
(XIndZaX/\QV>G = (XZ?XRes/\QV)H =1

(Note that these, unlike the previous calculations, are not as trivial - one must work out
the inner product (xy, Xresa2v)y and same for Z. But they do come out to be 1.) Thus
IndY = Ind Z = A%V, and there can’t be other summands by dimension counting. O]

The following are the character tables for S5 and As. These are helpful to understand the
statement of the previous proposition.

120 15 12 12

As |1 (123) (12)(34) (12345) (21345)

Ul 1 1 1 1

V4 o1 0 -1 -1

W5 -1 1 0 0

Y |3 0 -1 1+2f 1——2f

Z |3 0 -1 =5 Livh

1 10 20 30 24 15 20
Ss |1 (12) (123) (1234) (12345) (12)(34) (12)(345)
U |1 1 1 1 1 1 1
4 NS R | -1 1 1 -1
Vo4 2 1 0 -1 0 -1
vViol4o2 1 0 -1 0 1
ANV I6 0 0 0 1 -2 0
wols 1 -l -1 0 1 1
wls -1 -l 1 0 1 -1
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