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Proposition 0.1 (Exercise 1). Let G be a group, and let V,W be finite-dimensional rep-
resentations of G. Let HomG(V,W ) be the set of linear maps φ : V → W such that the
following square commutes for every g ∈ G.

V W

V W

φ

g g

φ

The space Hom(V,W ) is a representation of G via the isomorphism V ∗⊗W ∼= Hom(V,W ).
Using this G-module structure, we can define

Hom(V,W )G = {φ ∈ Hom(V,W )|g · φ = φ}

Then Hom(V,W )G = HomG(V,W ).

Proof. We’ll write gφ for composition and g · φ for the action of g on φ ∈ Hom(V,W ) as a
G-module in order to distinguish these notions. Note that

(g · φ)(v) = gφ(g−1v)

by the discussion on page 4 of Fulton & Harris. Let φ ∈ HomG(V,W ). Then since gφ = φg,
we get

(g · φ)(v) = gφ(g−1v) = φ(gg−1v) = φ(v)

Thus g · φ = φ, and φ ∈ Hom(V,W )G. Thus HomG(V,W ) ⊂ Hom(V,W )G. Now suppose
φ ∈ Hom(V,W )G. Then for all v ∈ V and g ∈ G,

φ(v) = (g−1 · φ)(v) = g−1φ(gv) =⇒ gφ(v) = φ(gv) =⇒ gφ = φg

Thus φ ∈ HomG(V,W ), so we have the opposite containment Hom(V,W )G ⊂ HomG(V,W ).
Hence these are equal.

Proposition 0.2 (Exercise 2). Let ρ : G → GL(V ) be a complex representation of a finite
group G where dimV = n, such that det ρ(g) = 1 for all g ∈ G. Then ∧kV and ∧n−kV ∗ are
isomorphic as representations of G.
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Proof. As is typical when dealing with representations, we’ll be somewhat careless in our
notation, and refer to the map ρ(g) simply by g. It makes notation more compact, and
hopefully does not cause too much confusion.

First, we claim that ∧nV is the trivial representation, that is, g ∈ G acts as the identity
on ∧nV . Let g ∈ G, and choose a basis of V consisting of eigenvectors w1, . . . , wn for g. (We
can do this because V is a C-vector space.) Let λi be the corresponding eigenvector for wi.
Then ∧nV is spanned by w1 ∧ . . . ∧ wn, so it is sufficient to check that g acts as identity on
this single spanning element. We compute how g acts on this element:

g(w1 ∧ . . . ∧ wn) = gw1 ∧ . . . ∧ gwn = λ1w1 ∧ . . . ∧ λnwn =

(
n∏
i=1

λi

)
(w1 ∧ . . . ∧ wn)

By the hypothesis, the determinant of g is 1, so the product of eigenvectors is one. Hence
g(w1∧ . . .∧wn) = w1∧ . . .∧wn, so g acts as the identity, as claimed. Thus ∧nV is the trivial
representation, that is, ∧nV ∼= C as representations of G. Now consider the G-linear map

〈, 〉 : ∧kV × ∧n−kV → ∧nV
〈v1 ∧ . . . ∧ vk, vk+1 ∧ . . . ∧ vn〉 = v1 ∧ . . . ∧ vk ∧ vk+1 ∧ . . . ∧ vn

This induces a linear map φ : ∧kV → HomG(∧n−kV,∧nV ) defined by φ(x)(y) = 〈x, y〉. Note
that ∧n−kV ∗ ∼= (∧n−kV )∗ = HomG(∧n−kV,C) (see Appendix B.3, page 476 of Fulton &
Harris). By our earlier remarks concerning ∧nV , we have ∧n−kV ∗ ∼= HomG(∧n−kV,∧nV ).
Thus we can think of φ as a map ∧kV → ∧n−kV ∗, so if we can show that φ is an isomorphism
we are done. Since the domain and range of φ are finite-dimensional vector spaces, by the
Rank-Nullity Theorem injectivity of φ implies surjectivity, so it is sufficient to show that φ
is injective.

Suppose x ∈ kerφ. That is, φ(x)(y) = 〈x, y〉 = 0 for all y ∈ ∧n−kV . Fix a basis e1, . . . en
of V . Then, using the notation of multi-indices, we can write x uniquely as

∑
I aIeI where

I = (i1, . . . , ik) 1 ≤ i1 < i2 < . . . < ik ≤ n eI = ei1 ∧ . . . ∧ eik
Suppose x 6= 0. Then choose I0 so that aI0 6= 0, and let J0 be the “complimentary” multi-
index to I0, that is, J0 = (jk+1, . . . , jn) where 1 ≤ jk+1 < jk+2 < . . . < jn ≤ n and

{i1, . . . , ik+1} ∩ {jk+1 . . . , jn} = ∅ {i1, . . . , ik+1} ∪ {jk+1, . . . , jn} = {1, . . . , n}

Define y = eJ0 . Then

φ(x)(y) = 〈x, y〉 = x ∧ y =

(∑
I

aIeI

)
∧ eJ0 =

∑
I

aI(eI ∧ eJ0)

For I 6= I0, the wedge product eI ∧eJ0 will be zero, since there will be a repeated basis vector
ei. Thus

φ(x)(y) =
∑
I

aI(eI ∧ eJ0) = aI0(eI0 ∧ eJ0)

Since I0 and J0 were complimentary/disjoint, eI0 ∧ eJ0 = ±(e1∧ . . .∧ en), where the ± comes
from the sign of the permutation required to get to the increasing order. Thus φ(x)(y) 6= 0,
which is a contradiction, so we conclude that x = 0 so kerφ = 0, and φ is injective, and
hence it is an isomorphism.
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Lemma 0.3 (for Exercise 3a). Let G be a finite group, and let RG be the regular represen-
tation (over C), and let χRG

be the character. Then

χRG
(g) =

{
0 g 6= e

|G| g = e

Proof. If g = e, then g acts as the identity on RG, so its matrix representation is the identity
matrix, of size dimRG = |G|. This has trace |G|. If g 6= e, we know that g acts to permute
the basis of RG, so g is represented by a permutation matrix (one 1 in each row and column,
zeroes else). We know that g acting by left multiplication has no fixed points, because a
fixed point h implies

gh = h =⇒ g = e

Thus g fixes none of the basis of RG. Thus the diagonal entries of the matrix representation
of g are all zero, so the tr(g) = χRG

(g) = 0.

Proposition 0.4 (Exercise 3a). The regular representation R of S3 decomposes as

R ∼= U ⊕ U ′ ⊕ V ⊕ V

Proof. By the previous lemma, we know that the character of the regular represenation of
S3 is

χR(g) =

{
0 g 6= e

6 g = e

A character table for S3 can be found on page 14 of Fulton & Harris. We can write χR as
the sum χR = χU + χU ′ + 2χV . Since a representation is determined by its character and
this is also the character of

U ⊕ U ′ ⊕ V ⊕ V
we get the isomorphism (of S3-representations)

R ∼= U ⊕ U ′ ⊕ V ⊕ V

Lemma 0.5 (for Exercise 3b). Let V be the standard, irreducible, 2-dimensional represen-
tation of S3. Then the character of Symk V is

χSymk V (1) = k + 1

χSymk V (σ) =

{
1 k ≡ 0 mod 2

0 k ≡ 1 mod 2

χSymk V (τ) =


1 k ≡ 0 mod 3

−1 k ≡ 1 mod 3

0 k ≡ 2 mod 3

where σ = (1 2) and τ = (1 2 3) and ω = e2πi/3.
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Proof. First, recall the usual basis e1, e2 of V with

τe1 = ωe1 τe2 = ω2e2 σe1 = e2 σe2 = e1

where τ = (1 2 3) and σ = (1 2) and ω = e2πi/3. The usual basis for Symk V is given by

{e1 · . . . · e1, e1 · . . . · e1 · e2, . . . e2 · . . . e2}

Note that dim Symk V = k+1, which gives us χSymk V (1) = k+1. We introduce the notation
v(i,j) = e1 · . . . · e1 · e2 · . . . · e2 where e1 appears i times and e2 appears j times. Then we
can rewrite the basis of Symk V as

{
v(i,j)|i+ j = k

}
, which we ordered as v(k,0) < v(k−1,1) <

. . . < v(0,k). The respective actions of σ, τ on v(i,j) are

σv(i,j) = σ(e1 · . . . · e1 · e2 · . . . e2)

= σe1 · . . . · σe1 · σe2 · . . . σe2

= e2 · . . . · e2 · e1 · . . . · e1

= e1 · . . . · e1 · e2 · . . . · e2

= v(j,i)

τv(i,j) = τ(e1 · . . . · e1 · e2 · . . . e2)

= τe1 · . . . · τe1 · τe2 · . . . τe2

= ωe1 · . . . · ωe1 · ωe2 · . . . ωe2

= ωi+2jv(i,j)

Viewing σ, τ as elements of GL(Symk V ), their matrices are

σ = IdT =


0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...
0 1 . . . 0 0
1 0 . . . 0 0

 τ =


ωk 0 0 . . . 0
0 ωk+1 0 . . . 0
0 0 ωk+2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ω2k


Note that these are (k + 1)× (k + 1) matrices. Thus

χSymk V (σ) = tr σ =

{
1 k ≡ 0 mod 2

0 k ≡ 1 mod 2

χSymk V (τ) = tr τ =
k∑
j=0

ωk+j = ωk
k∑
j=0

ωj = ωk(1 + ω + ω2 + 1 + ω + ω2 + . . .+ ωk)

Note that 1 + ω + ω2 = 0, so

χSymk V (τ) =


ωk k ≡ 0 mod 3

ωk(1 + ω) k ≡ 1 mod 3

0 k ≡ 2 mod 3
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When k ≡ 0 mod 3, ωk = 1. We have 1+ω = −ω2, so the case k ≡ 1 mod 3 becomes −ωk+2,
which is −1. Thus

χSymk V (τ) =


1 k ≡ 0 mod 3

−1 k ≡ 1 mod 3

0 k ≡ 2 mod 3

Proposition 0.6 (Exercise 3b, part one). Let V be the standard, 2-dimensional, irreducible
representation of S3, and let R be the regular representation of S3. Then

Symk+6 V ∼= Symk V ⊕R

(This is an isomorphism of S3-representations.) Note that as a consequence of the next
result, R ∼= Sym5 V , so we can also write this formula as

Symk+6 V ∼= Symk V ⊕ Sym5 V

Proof. We will show that they have the same character, using the previous lemma. Recall
that dim Symk V = k + 1 and dimR = |S3| = 6, so

χSymk+6 V (1) = dim Symk+6 V = k + 7 = dim Symk V + dimR = χSymk V⊕R(1)

By Lemma 0.3, χR = 0 except at the identity, so now we just need to show that χSymk+6 V =
χSymk V on σ, τ . By the previous lemma, the value on σ depends on k mod 2, and the value
on τ depends on k mod 3, but k ≡ (k + 6) mod 3 and k ≡ (k + 6) mod 2, so they agree
on σ and τ . Thus they have the same character, so they are isomorphic. (For proof that
R ∼= Sym5 V , see the next proposition.)

Proposition 0.7 (for Exercise 3b). Let V be the standard, 2-dimensional, irreducible rep-
resentation of S3. Then

Sym0 V ∼= U

Sym1 V ∼= V

Sym2 V ∼= U ⊕ V
Sym3 V ∼= U ⊕ U ′ ⊕ V
Sym4 V ∼= U ⊕ V ⊕ V
Sym5 V ∼= U ⊕ U ′ ⊕ V ⊕ V

If we write k = 6q + r where q, r ∈ Z and 0 ≤ r ≤ 5, then

Symk V ∼= Symr V ⊕
(⊕

R⊕q
)

where R ∼= U ⊕ U ′ ⊕ V ⊕ V is the regular representation.
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Proof. We’ll be somewhat slopping in writing a character of a representation of S3 as a 3-
tuple (x, y, z). For example, χU = (1, 1, 1), χU ′ = (1,−1, 1), χV = (2, 0,−1). By the Lemma
0.5, χSymk V = (k + 1, α, β) where

α =

{
1 k ≡ 0 mod 2

0 k ≡ 1 mod 2
β =


1 k ≡ 0 mod 3

−1 k ≡ 1 mod 3

0 k ≡ 2 mod 3

Using Proposition 2.1 of Fulton & Harris, the character of U⊕a ⊕ U ′⊕b ⊕ V ⊕c is

a(1, 1, 1) + b(1,−1, 1) + c(2, 0,−1) = (k + 1, α, β)

which gives the equations

‘a+ b+ 2c = k + 1 a− b = α a+ b− c = β

We can solve these equations to get

a =
1

2
(k + 1 + α)− 1

3
(k + 1− β)

b =
1

2
(k + 1− α)− 1

3
(k + 1− β)

c =
1

3
(k + 1− β)

Note that these are always integers. When k = 0, we recover (a, b, c) = (1, 0, 0), which
confirms Sym0 V = U . When k = 1, we get (a, b, c) = (0, 1, 1), which confirms Sym1 V = V .
Putting this all in a table, we get

k a b c
0 1 0 0
1 0 0 1
2 1 0 1
3 1 1 1
4 1 0 2
5 1 1 2

From this table, we can read off the irreducible decompositions of Symk V for k = 0, 1, 2, 3, 4, 5.

Sym0 V = U

Sym1 V = V

Sym2 V = U ⊕ V
Sym3 V = U ⊕ U ′ ⊕ V
Sym4 V = U ⊕ V ⊕ V
Sym5 V = U ⊕ U ′ ⊕ V ⊕ V

The last statement of the claim is just induction using the previous proposition. We know
that we can “peel off’ multiples of 6 by taking the direct sum with a copy of R, so the result
follows.
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Proposition 0.8 (Exercise 4). Let V be the standard, 2-dimensional, irreducible represen-
tation of S3. Then Sym2(Sym3 V ) ∼= Sym3(Sym2 V ).

Proof. Using Exercise 1.10 of Fulton & Harris, we have an (ordered) basis e1 = (ω, 1, ω2), e2 =
(1, ω, ω2) with

τe1 = ωe1 τe2 = ω2e2 σe1 = e2 σe2 = e1

where σ = (1 2), τ = (1 2 3) and ω = e2πi/3. (Recall that σ, τ generate S3, so this fully
determines the action of S3.) Define vij = ei · ej and vijk = ei · ej · ek. Then {v11, v12, v22} is a
basis for Sym2 V and {v111, v112, v122, v222} is a basis for Sym3 V . A basis for Sym2(Sym3 V )
is given by

v111 · v111 v111 · v112 v111 · v122 v111 · v222

v112 · v112 v112 · v122 v112 · v222

v122 · v122 v122 · v222

v222 · v222

and a basis for Sym3(Sym2 V ) is given by

v11 · v11 · v11 v11 · v11 · v12 v11 · v11 · v22

v11 · v12 · v12 v11 · v12 · v22 v11 · v22 · v22

v12 · v12 · v12 v12 · v12 · v22 v12 · v22 · v22 v22 · v22 · v22

We define a map, which we will show is an isomorpism.

Φ : Sym2(Sym3 V )→ Sym3(Sym2 V )

v111 · v222 7→ v11 · v12 · v22

v112 · v122 7→ v12 · v12 · v12

v111 · v111 7→ v11 · v11 · v11

v222 · v222 7→ v22 · v22 · v22

v111 · v112 7→ v11 · v11 · v12

v122 · v222 7→ v12 · v22 · v22

v111 · v122 7→ v11 · v12 · v12

v112 · v222 7→ v12 · v12 · v22

v112 · v112 7→ v11 · v11 · v22

v122 · v122 7→ v11 · v22 · v22

Since we have mapped a basis to a basis, Φ is an isomorphism of vector spaces, so it just
remains to check that it is equivariant with respect to the S3 action. Since S3 is generated
by σ, τ , it is sufficient to check that Φ respects the action of σ and τ .

On the basis e1, e2 of V , σ acts by the permutation (e1 e2). Recall that the G action
on the symmetric product is defined by g(x · y) = gx · gy. So σ acting on vijk = ei · ej · ek,
we just turn 1’s into 2’s and vice versa. For example, σv112 = v221 = v122. So we see that
v111 · v222 and v112 · v122 are acted on by σ as identity, as are Φ(v111 · v222) and Φ(v112 · v122).
The remaining 8 elements of each basis are acted on by σ in pairs of transpositions, and it
is straightforward to check Φ commutes with σ for each basis element. For example,
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v111 · v112 v11 · v11 · v12

v122 · v222 v12 · v22 · v22

σ

Φ

σ

Φ

Now we just need to check that Φ commutes with τ . Notice that e1, e2 are eigenvectors for
τ ; more specifically, τei = ωiei. This implies that τvij = ωi+jvij and τvijk = ωi+j+kvijk.
Similarly, τ(vijk · vmnl) = ωi+j+k+m+n+lvijk · vmnl. So to see that Φ commutes with τ , we just
need to check that Φ preserves the sum of the subscripts. This can be confirmed by simply
looking at the table definition of Φ. Thus we have shown that Φ commutes with σ, τ , so it
is S3-equivarient, so it is an isomorphism of representations.

Lemma 0.9 (for Exercise 5). Let V be a finite dimensional vector space over C. There
exists a Hermitian inner product H : V × V → V .

Proof. Fix a basis {v1, . . . , vn} of V . Then we have a vector space isomorphism

φ : V → Cn vi 7→ ei = (. . . , 0, 1, 0, . . .)

We have the classical Hermitian inner product on Cn given by

H̃ : Cn × Cn → C H̃(z, w) =
n∑
i=1

ziwi

where z = (z1, . . . , zn), w = (w1, . . . , wn). Then define H : V × V → V by

H(u, v) = H̃(φv, φw)

Then H inherits all properties of H̃, so H is a Hermitian inner product.

Lemma 0.10 (for Exercise 5). Let V be a finite dimensional vector space over C and let G

be a finite group with representation G× V → V . Suppose H̃ : V × V → C is a Hermitian
inner product. Define

H : V × V → C H(u, v) =
1

|G|
∑
g∈G

H̃(gu, gv)

Then H is a G-invariant Hermitian inner product on V .

Proof. It is straightforward to show via computation that H is additive, linear in the first
entry, antilinear in the second entry, conjugate-symmetric, and positive-definite. We will
show that H is G-invariant. Let x ∈ G.

H(u, v) =
1

|G|
∑
g∈G

H̃(gu, gv)

H(xu, xv) =
1

|G|
∑
g∈G

H̃(gxu, gxv)

As g runs over each element in G, so does xg for a fixed x ∈ G, since G → G, g 7→ xg is a
permutation of G. Thus these two sums are the same up to permutation summands. Hence
H(u, v) = H(xu, xv), and H is G-invariant.
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Proposition 0.11 (Exercise 5). Let V be an irreducible representation of a finite group G.
Up to scalars, there is a unique Hermitian inner product on V that is G-invariant.

Proof. By the previous two lemmas, a G-invariant Hermitian inner product on V exists.
Suppose H,H ′ are two such products. Define

H̃ : V → V ∗ v 7→
(
u 7→ H(v, u)

)
H̃ ′ : V → V ∗ v 7→

(
u 7→ H ′(v, u)

)
Since H,H ′ are nondegenerate forms, H̃, H̃ ′ are vector space isomorphisms. Then the com-
position (H̃ ′)−1◦H̃ : V → V is a vector space automorphism. Since H̃ ′ is G-linear, its inverse
is also G-linear, so this is a composition of G-linear maps, which is therefore G-linear. Then
by Schur’s Lemma, this composition must be equal to λI for some λ ∈ C. This implies that
H̃ ′ = λH̃, which implies that H ′ = λH.

Lemma 0.12 (for Exercises 6,7). Let V be a finite dimensional representation of G, and
let g ∈ G have eigenvalues {λi}dimV

i=1 (viewing g ∈ GL(V )). Then the eigenvalues of g as an
automorphism of V ⊗n are

n∏
k=1

λik

where i1, i2, . . . , in ∈ {1, . . . , dimV }. Viewing g as an automorphism of Symn V , the eigen-
values are all such products with i1 ≤ i2 ≤ . . . ≤ in. Viewing g as an automorphism of ∧nV ,
the eigenvalues are all such products with i1 < i2 < . . . < in.

Proof. Define I = {1, . . . , dimV }, and let wi ∈ V be the corresponding eigenvector for λi.
Let i1, i2, . . . , in ∈ I. Viewing g as g ∈ GL(V ⊗n).

g (wi1 ⊗ wi2 ⊗ . . .⊗ win) = gwi1 ⊗ gwi2 ⊗ . . .⊗ gwin
= λi1wi1 ⊗ λi2wi2 ⊗ . . .⊗ λinwin

=

(
n∏
k=1

λik

)
(wi1 ⊗ wi2 ⊗ . . .⊗ win)

so we see that wi1 ⊗wi2 ⊗ . . .⊗win is an eigenvector of g with eigenvalue
∏n

k=1 λik . Thus all
products of this type are eigenvalues of g on V ⊗n. Since the dimesion of V ⊗n is (dimV )n, and
we have found (dimV )n eigenvalues (counting multiplicities), these are all of the eigenvalues.

Now we prove the statements about Symn V and ∧nV . Since these are subspaces of V ⊗n,
the eigenvalues must be a subset of these products. Thinking of g as g ∈ GL(Symn V ), we
have identified tensors up to permutation, so we can do the same calculation to have g act
on wi1 ⊗ . . .⊗win , except now we may permute them so that i1 ≤ i2 ≤ . . . ≤ in. So in order
not to count eigenvalues too many times, we restrict to products where i1 ≤ . . . ≤ in. A
similar argument works for the statement about ∧nV .

Proposition 0.13 (Exercise 6). Let V be a finite dimensional representation of a finite
group G. Then

χSym2 V (g) =
1

2

(
χV (g)2 + χV (g2)

)
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Proof. Let d = dimV , and let {λi}di=1 be the set of eigenvalues for g : V → V . Then

χV (g) =
d∑
i=1

λi χV (g2) =
∑
i

λ2
i χV (g)2 =

(∑
i

λi

)2

By the previous lemma, the set of eigenvalues for g : Sym2 V → Sym2 V is {λiλj|i ≤ j}.
Now, reusing the identity ∑

i<j

λiλj =
(
∑

i λi)
2 −

∑
i λ

2
i

2

found on page 13 of Fulton & Harris, we can evaluate χSym2 V .

χSym2 V (g) =
∑
i≤j

λiλj =

(∑
i=j

λiλj

)
+

(∑
i<j

λiλj

)
=
∑
i

λ2
i +

(
∑

i λi)
2 −

∑
i λ

2
i

2

=
1

2

∑
i

λ2
i +

(∑
i

λi

)2
 =

1

2

(
χV (g2) + χV (g)2

)

Proposition 0.14 (Exercise 7). Let V be a representation of G. The characters of Symk V
and ∧kV are

χSymk V (g) =
∑ k∏

i=1

χV (gi)mi

mi!imi
χ∧kV (g) =

∑ k∏
i=1

χV (gi)mi

mi!imi

where both sums are over multi-indices (m1, . . . ,mk) where
∑

j jmj = k and mj ≥ 0.

Proof. Let d = dimV and let {λi}di=1 be the set of eigenvalues for g ∈ GL(V ). Let hk be the
complete homogenous symmetric polynomial, ek be the elementary symmetric polynomial,
and pk be the power sum symmetric polynomial, all in λ1, . . . , λd. Concretely, they are

hk =
∑

i1≤...im

λi1 . . . λim ek =
∑

i1<...<im

λi1 . . . λim pk =
∑
i

λki

Note that χV (gk) = pk. By Lemma 0.12, the eigenvalues for g ∈ GL(Symk V ) are products
λi1 . . . λim where i1 ≤ . . . ≤ im, so the trace is the sum over all such products. Similarly for
∧kV , the eigenvalues are the same kind of products where i1 < . . . < im, so the character is
the sum over those products. Thus

χSymk V (g) = hk χ∧kV (g) = ek

Using Newton’s Identities, we can write both hk and ek in terms of the polynomials p1, . . . , pk.
That is to say, we can write both χSymk V (g) and χ∧kV (g) in terms of χV (g), χV (g2), . . . , χV (gk).

hk =
∑ k∏

i=1

pmi
i

mi!imi
ek =

∑ k∏
i=1

pmi
i

mi!imi
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where both sums are over multi-indices (m1, . . . ,mk) where
∑

j jmj = k and mj ≥ 0.
Changing this into the notation of characters, we get exactly the claimed formulas.

χSymk V (g) =
∑ k∏

i=1

χV (gi)mi

mi!imi
χ∧kV (g) =

∑ k∏
i=1

χV (gi)mi

mi!imi

Proposition 0.15 (Exercise 8). Let G be a finite group acting on a finite set X. Let

V =
⊕
x∈X

Cx

be the permutation representation of G. Then for g ∈ G, χV (g) is the number of elements
of X fixed by g.

Proof. Recall that the action of G on V is defined by

G× V → V (g, x) 7→ g · x

where · is the action of G on X. Then we extend linearly to all of V . That is, each g ∈ G
acts on V to permute the basis X of V . Thus, the matrix representation of g in the basis
X is a permutation matrix. In this permutation matrix, a one along the diagonal represents
an element x ∈ X for which g · x = x, that is, a fixed point of g. Since g is represented by
a permutation matrix, all entries are zero except for a single one in each row, so the trace is
the number of fixed points.

Proposition 0.16 (Exercise 9). Let V,W be irreducible representations of a finite group G,
and L0 : V → W a linear map. Define L : V → W by

L =
1

|G|
∑
g∈G

g−1L0g

or more explicitly,

L(v) =
1

|G|
∑
g∈G

g−1 · L0(g · v)

Then L is a G-module homomorphism. Consequently, if V and W are not isomorphic rep-
resentations, then L = 0, and if V = W , then L is multiplication by tr(L0)

dimV
.

Proof. We claim that L is a G-module homomorphism. Let h ∈ G.

L(h · v) =
1

|G|
∑
g∈G

g−1 · L0(g · (h · v)) =
1

|G|
∑
g∈G

g−1 · L0((gh) · v)

Define x = gh. Then g−1 = hx−1. Note that as g ranges over G, so does x, so we can rewrite
our sum as

1

|G|
∑
x∈G

(hx−1) · L0(x · v) =
1

|G|
∑
x∈G

h · (x−1 · L0(x · v))

= h · 1

|G|
∑
x∈G

x−1 · L0(x · v)

= h · L(v)

11



Thus L is G-linear. Now by Schur’s Lemma, since L : V → W is a G-module homomorphism
between irreducible representations, it is either an isomorphism or zero. Hence if V,W are
not isomorphic, L = 0. If V = W , Schur’s Lemma tells us that L = λI for some λ. We know
that λ = tr(L)

dimV
. Since tr is linear,

tr(L) =
1

|G|
∑
g∈G

tr(g−1L0g) =
1

|G|
∑
g∈G

tr(L0) = tr(L0)

since tr(AB) = tr(BA) (we applied this where A = g−1L0, B = g). Thus λ = tr(L0)
dimV

.

Lemma 0.17 (for Exercise 10). Let G be a finite group with irreducible representations
ρV : V → GL(V ) and ρW : W → GL(W ). For g ∈ G, we view ρV (g) as a matrix with ij-th
entry αij(g). Similarly, let βij be the ij-th entry of ρW (g). If V 6∼= W , then

1

|G|
∑
g∈G

αik(g
−1)β`j(g) = 0

If the matrices ρV (g) are unitary, then for all i, j, k, ` we have

(αik, β`j) = 0

(For the case V = W , see next lemma.)

Proof. Let L0 : V → W be a linear map, viewed as a matrix, with ij-th entry L0
ij. By the

previous result,

L =
1

|G|
∑
g∈G

ρW (g−1) ◦ L0 ◦ ρV (g)

is the zero map. On a matrix-entry level, we have

0 = Lij

=
1

|G|
∑
g∈G

(
ρW (g−1) ◦ L0 ◦ ρV (g)

)
ij

=
1

|G|
∑
g∈G

(∑
k,`

(
ρW (g−1)ik

)
L0
k` (ρV (g))`j

)

=
1

|G|
∑
g∈G

∑
k,`

(
αik(g

−1)
)
L0
k`

(
β`j(g)

)
Since L0 was any linear map, we can choose L0

k` to be anything in C, and this equality will
still hold. In particular, we can choose L0

k` to be zero for everything except one fixed pair
(k0, `0), and obtain

0 =
1

|G|
∑
g∈G

αik(g
−1)β`j(g)

where k = k0, ` = `0. Now suppose ρV (g) is unitary. Then αij(g
−1) = αij(g), so we get

(αik, β`j) =
1

|G|
∑
g∈G

αik(g)β`j(g) =
1

|G|
∑
g∈G

αik(g
−1)β`j(g) = 0

12



Lemma 0.18 (for Exercise 10). Let G be a finite group with an irreducible representation
ρ : V → GL(V ). For g ∈ G, we view ρ(g) as a matrix with ij-th entry αij(g). Then

1

|G|
∑
g∈G

αik(g
−1)α`j(g) =

1

dimV
δk`δij

If the matrices ρ(g) are unitary, then

(αki, α`j) =
1

dimV
δk`δij

Proof. Let L0 : V → V be a linear map, viewed as a matrix, with ij-th entry L0
ij. By the

previous result,

L =
1

|G|
∑
g∈G

ρ(g−1) ◦ L0 ◦ ρ(g)

is multiplication by λ = tr(L0)
dimV

. Denoting the identity map V → V by I, we can write the
statement L = λI as

L =
1

dimV

∑
k

L0
kkI =

1

dimV

∑
k,`

δk`L
0
k`I

On a matrix-entry level, this says

Lij =
1

dimV

∑
k,`

δk`L
0
k`Iij =

1

dimV

∑
k,`

δk`δijL
0
k`

On the other hand, we can also write Lij using the definition of L in the following way.

Lij =
1

|G|
∑
g∈G

(
ρ(g−1) ◦ L0ρ(g)

)
ij

=
1

|G|
∑
g∈G

∑
k,`

(
αik(g

−1)
)
L0
k`

(
α`j(g)

)
=

1

|G|
∑
k,`

(∑
g∈G

(
αik(g

−1)α`j(g)
))

L0
k`

As in the proof of the previous lemma, L0 was arbitrary, so this equality holds for any values
of L0

k`. So if we choose them to be zero everywhere except for some pair (k0, `0), the sums
over k, ` collapse to a single term, both divisible by L0

k0`0
, which cancel. All this to say, we

can equate the coefficients of L0
k` in these sums to obtain

1

|G|
∑
g∈G

αik(g
−1)α`j(g) =

1

dimV
δk`δij

Now suppose the matrices ρ(g) = (αik(g)) are unitary. Then αik(g
−1) = αki(g), so we get

(αki, α`j) =
1

|G|
∑
g∈G

αki(g)α`j =
1

|G|
∑
g∈G

αik(g
−1)α`j(g) =

1

dimV
δk`δij
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Proposition 0.19 (Exercise 10). Let G be a finite group, and let ρm : G→ GL(Vm) be the
set of irreducible representations. Suppose that for g ∈ G, ρm(g) is a unitary matrix. For
g ∈ G, viewing ρm(g) as a matrix, let the ij-th entry be αmij (g). Then the set of all αmij forms
an orthogonal basis for the vector space of functions G→ C with inner product given by

(α, β) =
1

|G|
∑
g∈G

α(g)β(g)

Proof. Note that the space of functions G → C has dimension |G|, and the set
{
αmij
}

has
size ∑

m

(dimVm)2

which is equal to |G|, so it is at least possible that these functions form a basis. First,
suppose m 6= n and consider the functions αmik and αn`j. Since m 6= n, Vm 6∼= Vn, so by Lemma
0.17, we have (

αmik, α
n
`j

)
= 0

If m = n, then by Lemma 0.18, (
αmik, α

m
`j

)
=

1

dimVm
δi`δkj

That is, the inner product is zero unless i = ` and k = j, in which case αmik = αm`j . Thus

(
αmik, α

n
`j

)
=

{
1

dimVm m = n, i = `, k = j

0 else

which is to say that
{
αmij
}

is an orthogonal basis.

Lemma 0.20 (for Exercise 11). The elements of SL2(Z/3) are(
1 0
0 1

) (
2 0
0 2

) (
0 2
1 0

) (
0 1
2 0

)
(

1 x
0 1

) (
1 0
x 1

) (
2 x
0 2

) (
2 0
x 2

)
(
x 2
1 0

) (
0 2
1 x

) (
x 1
2 0

) (
0 1
2 x

)
(

1 1
1 2

) (
1 2
2 2

) (
2 1
1 1

) (
2 2
2 1

)
where x can be 1 or 2. (This gives a total of 24 elements.)

Proof. There can be no elements of SL2(Z/3) with three or four zero entries, since that
would force the determinant to be zero. If there are two zero entries, since it is invertible,
the zeroes occur along a diagonal. The nonzero diagonal must have product 1 if it is the
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main diagonal, or −1 = 2 if it is the antidiagonal. Thus the elements of SL2(Z/3) with two
zero entries are (

1 0
0 1

) (
2 0
0 2

) (
0 2
1 0

) (
0 1
2 0

)
Now consider elements with exactly one zero entry. As before, the nonzero diagonal must
have product 1 if it is the main diagonal and product 2 if is the antidiagonal. So all of the
elements with exactly one zero look like(

1 x
0 1

) (
1 0
x 1

) (
2 x
0 2

) (
2 0
x 2

)
(
x 2
1 0

) (
0 2
1 x

) (
x 1
2 0

) (
0 1
2 x

)
for x = 1 or x = 2. Finally, consider elements with no zero entries.(

a b
c d

)
∈ SL2(Z/3)

We know ad − bc = 1. Since none of a, b, c, d are zero, ad = 1 or ad = 2. Since bc 6= 0,
ad 6= 1. Thus ad = 2, and bc = 1. This means that {a, d} = {1, 2} and b, c can either both
be 1 or both be 2. So the elements of this type are(

1 1
1 2

) (
1 2
2 2

) (
2 1
1 1

) (
2 2
2 1

)

Lemma 0.21 (for Exercise 11). The conjugacy classes of SL2(Z/3) are

C0 =

{(
1 0
0 1

)}
C1 =

{(
2 0
0 2

)}
C2 =

{(
0 2
1 0

)
,

(
0 1
2 0

)
,

(
1 1
1 2

)
,

(
1 2
2 2

)
,

(
2 1
1 1

)
,

(
2 2
2 1

)}
C3 =

{(
2 1
0 2

)
,

(
1 1
2 0

)
,

(
0 1
2 1

)
,

(
2 0
2 2

)}
C4 =

{(
0 2
1 1

)
,

(
1 2
1 0

)
,

(
2 0
1 2

)
,

(
2 2
0 2

)}
C5 =

{(
0 1
2 2

)
,

(
1 1
0 1

)
,

(
2 1
2 0

)
,

(
1 0
2 1

)}
C6 =

{(
2 2
1 0

)
,

(
0 2
1 2

)
,

(
1 2
0 1

)
,

(
1 0
1 1

)}
The orders of the elements in each class are given in the following table.
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Class Order
C0 1
C1 2
C2 4
C3 6
C4 6
C5 3
C6 3

Proposition 0.22 (Exercise 11). Let ω = e2πi/3. The character table of SL2(Z/3) is

(size) 1 1 6 4 4 4 4
SL2(Z/3) C0 C1 C2 C3 C4 C5 C6

U 1 1 1 1 1 1 1
W1 1 1 1 ω2 ω ω ω2

W2 1 1 1 ω ω2 ω2 ω
V 2 −2 0 1 1 −1 −1

V ⊗W1 2 −2 0 ω2 ω −ω −ω2

V ⊗W2 2 −2 0 ω ω2 −ω2 −ω
T 3 3 −2 0 0 0 0

Proof. We can deduce the dimensions of the irreducible representations using Corollary 2.18
of Fulton & Harris. We have 7 positive numbers for which the sum of squares is 24. None
can be 4, since then the dimensions of the remaining irreps would all have to be 1, but
16+1+1+1+1+1+1 6= 24. There also can’t be two dim=3 irreps, since 9+9 = 18. There
can’t be zero dim=3 irreps, because we can’t get 24 by a sum of 4’s and 1’s with 7 terms.
Thus there is exactly one dim=3 irrep. We have 6 remaining irreps. Let a be the number of
dim=1 irreps and b be the number of dim=2 irreps. Then a + b = 6 and a + 4b = 15. This
has a unique solution (a, b) = (3, 3). Thus the dimensions of the irreps are (1, 1, 1, 2, 2, 2, 3).
We always have the trivial representation, so at this point our character table looks like

(size) 1 1 6 4 4 4 4
SL2(Z/3) C0 C1 C2 C3 C4 C5 C6

U 1 1 1 1 1 1 1
1
1
2
2
2
3

First let’s find the dim=1 irreps. These are homomorphisms SL2(Z/3)→ C∗. An element of
order n must be sent to an nth root of unity. It turns out (not obviously) that it’s impossible
to send C1 to −1, so it has to go to 1. Let ω = e2πi/3, and define W1,W2 by the following
characters.
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(size) 1 1 6 4 4 4 4
SL2(Z/3) C0 C1 C2 C3 C4 C5 C6

U 1 1 1 1 1 1 1
W1 1 1 1 ω2 ω ω ω2

W2 1 1 1 ω ω2 ω2 ω

One can check that these are in fact representations, and that (χW1 , χW1) = (χW2 , χW2) = 1,
so these are in fact irreps. We need to find a character of a two dimensional irreducible
representation. Notice that H = C0∪C1∪C2 is an index 3 subgroup of SL2(Z/3) isomorphic
to the quaternion group. The character table of the quaternion group is

1 1 2 2 2
H 1 −1 i j k
UH 1 1 1 1 1
Ai 1 1 1 −1 −1
Aj 1 1 −1 1 −1
Ak 1 1 −1 −1 1
VH 2 −2 0 0 0

Note that C0 corresponds to the conjugacy class of 1, C1 corresponds to the conjugacy class
of −1, and the conjugacy classes of i, j, k make up C2. To distinguish U as a representation
of H,G = SL2(Z/3), write UH and UG for the H- and G-representations respectively. Note
that ResUG = ResW1 = ResW2 = UH . Using Frobenius reciprocity, we can calculate

(χIndAi
, χUG

)G = (χIndAi
, χW1)G = (χIndAi

, χW2)G = (χAi
, χUH

)H = 0

so IndAi does not include any direct summands of UG,W1, or W2. Since it is three dimen-
sional, it must be the one three dimensional irreducible represntation of G, which at this
point we know nothing about, except that it exists. Using the Mackey formula

χIndW (g) =
1

|H|
∑

x∈G,x−1gx∈H

χW (x−1gx)

for the character of an induced representation, we can compute χIndAi
= (3, 3,−2, 0, 0, 0, 0),

which gives us the character of the mystery dim=3 irrep. Now consider IndVH . Using
Frobenius reciprocity,

(χIndVH , χUG
)G = (χIndVH , χW1)G = (χIndVH , χW2)G = (χVH , χUH

)H = 0

so UG,W1,W2 do not appear in the direct sum decomposition of IndVH . Again, using
the Mackey formula, we can compute that IndVH = (6,−6, 0, 0, 0, 0). Then notice that
χT + χT 6= χIndVH , so IndVH 6∼= T ⊕ T . Thus IndVH must be a direct sum of three of the
various 2-dimension irreps of G.

Suppose it is a direct sum of three copies of the same representation V0. Then 3χV0 =
(6,−6, 0, 0, 0, 0), which implies χV0 = (2,−2, 0, 0, 0, 0). However, we compute (χV0 , χV0) 6= 1,
so this is not the character of an irreducible representation.

Write IndVh = V1 ⊕ V2 ⊕ V3. The summands V1, V2, V3 may be the same or different,
all we know is that they are all 2-dimensional irreps of G, we just know they aren’t all the
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same. So χV1 + χV2 + χV3 = (6,−6, 0, 0, 0, 0). Consider the values of χVi on the class C1. It
must be a sum of up to square roots of unity, so the possibilities are {0, 1,−1, 2,−1}. Since
we need to have three of these add up to 6, they must all be −2. So χVi(C1) = −2. Since Vi
is irreducible,

0 = (χVi , χT ) =
1

|G|
∑
g∈G

χVi(g)χT (g) =
1

24
(1(2)(3) + 1(a)(3) + 6(−2)b)

=
1

24
(6 + 3χVi(C1)− 12χVi(C2)) =⇒ 6 + 3χVi(C1) = 12χVi(C2) = 0

=⇒ χVi(C2) =
1

4
(χVi(C1) + 2)

Since we know that χVi(C1) = −2, we get χVi(C2) = 0 for i = 1, 2, 3. Let ai = χVi(C3), bi =
χVi(C4), ci = χVi(C5), di = χVi(C6). Since Vi is irreducible, we get

(χVi , χU) = 0 (χVi , χW1) = 0 (χVi , χW2) = 0

expanding out and simplifying these equations, we get

ai + bi + ci + di = 0 ai + ωbi + ωci + d = 0 ωai + b+ c+ ωdi = 0

We can combine these equations to conclude that ci = −bi and di = −ai. We have reduced
everything to finding the values of a1, a2, a3, b1, b2, b3. We have the equations

a1 + a2 + a3 = 0 b1 + b2 + b3 = 0

which can eliminate the variables a3, b3. Using the fact that
(
χVi , χVj

)
= δij, in the case

i 6= j we get
1 + aiaj + bibj = 0

which is actually 3 equations. Using these, we can eliminate 3 more variables, leaving just
a1 undetermined. Doing a bit more algebra, we can finally conclude that V1, V2, V3 are all
distinct, and the final character table is as claimed.

Proposition 0.23 (Exercise 12). Let H = A5 ⊂ G = S5. Then

IndU = U ⊕ U ′ IndV = V ⊕ V ′ IndW = W ⊕W ′ IndY = IndZ = ∧2V

(For the character tables of S5 and A5 detailing these these representations, see tables below.)

Proof. Since U, V,W refer to representations of both H and G, to distinguish them we’ll
write UH , VH ,WH for the H-reps, and UG, VG,WG for the G-reps. First we tackle IndU .
Note that ResUG = ResU ′ = UH . By Frobenius reciprocity,

(χIndUH
, χUG

)G = (χUH
, χResUG

)H = (χUH
, χUH

)H = 1

(χIndUH
, χU ′)G = (χUH

, χResU ′)H = (χUH
, χUH

)H = 1

so UG and U ′ both in IndUH as a single direct summand. Since H is an index two subgroup,
we know that dim IndT = 2 dimT for any representation T , so dim IndUH = 2 dimU = 2.
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Thus IndUH = UG ⊕ U ′, since there can’t be any other summands, since that would make
the dimension too big. Now consider IndVH . Note that ResVG = ResV ′ = VH , so again
using Frobenius reciprocity,

(χIndVH , χVG)G = (χVH , χResVG)H = (χVH , χVH )H = 1

(χIndVH , χV ′)G = (χVH , χResV ′)H = (χVH , χVH )H = 1

thus IndVH = VG⊕V ′. There can’t be other summands by dimension counting. Now consider
IndWH . Again, ResWG = ResW ′ = WH , and we perform exactly the same calculation with
Frobenius reciprocity to conclude that IndWH

∼= WG ⊕W ′.

(χIndWH
, χWG

)G = (χWH
, χResWG

)H = (χWH
, χWH

)H = 1

(χIndWH
, χW ′)G = (χWH

, χResW ′)H = (χWH
, χWH

)H = 1

Finally, consider IndY and IndZ. We have Res∧2V = (6, 0,−2, 1, 1).

(χIndY , χ∧2V )G = (χY , χRes∧2V )H = 1

(χIndZ , χ∧2V )G = (χZ , χRes∧2V )H = 1

(Note that these, unlike the previous calculations, are not as trivial - one must work out
the inner product (χY , χRes∧2V )H and same for Z. But they do come out to be 1.) Thus
IndY = IndZ = ∧2V , and there can’t be other summands by dimension counting.

The following are the character tables for S5 and A5. These are helpful to understand the
statement of the previous proposition.

1 20 15 12 12
A5 1 (123) (12)(34) (12345) (21345)
U 1 1 1 1 1
V 4 1 0 -1 -1
W 5 -1 1 0 0

Y 3 0 -1 1+
√

5
2

1−
√

5
2

Z 3 0 -1 1−
√

5
2

1+
√

5
2

1 10 20 30 24 15 20
S5 1 (12) (123) (1234) (12345) (12)(34) (12)(345)
U 1 1 1 1 1 1 1
U ′ 1 -1 1 -1 1 1 -1
V 4 2 1 0 -1 0 -1
V ′ 4 -2 1 0 -1 0 1
∧2V 6 0 0 0 1 -2 0
W 5 1 -1 -1 0 1 1
W ′ 5 -1 -1 1 0 1 -1
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